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Abstract. We present a detailed malysis of the thermodynamical properties as well as thermal 
 effects on the classical dynamics of the SU(2)  Lipkin model. Particular attention is devoted to the 
temperature dependence of fixed points and bifurcation of equilibria. We find that qualitatively. 
temperature effecls tend to counterbalance the effects of the two-body interaction. 

1. Introduction 

The SU(2) Lipkin model was originally proposed as an exactly soluble model which 
contains the main characteristics of the nuclear two-body interaction [l]. Therefore, it 
constitutes a powerful tool in what concerns the study of the validity of the various many- 
body approximation schemes used to describe nuclear spectra In this context one is usually 
concerned with ground states or low-lying energy-level properties. 

Recently the SLr(2) Lipkin model, due to its very rich and simple structure, has been 
revisited by various groups in the context of dynamical systems. Its semiclassical limit has 
been studied by several authors [2, 31, however omitting the second interaction term (W = 0 
in (I)). In the particular case of the Lipkin model, the classical limit is mathematically well 
defined and unique. Also 1/N, where N is the number of particles can be considered as an 
expansion parameter [41. 

In our opinion one of the important open questions in the area of dynamical systems 
is the effect of temperature. The purpose of the present paper is to shed some light on 
this question by presenting a detailed analysis of both thermodynamical properties, phase 
transition with temperature and the thermal dynamics properties: the behaviour of fixed 
points and bifurcation of equilibria as a function of temperature in the most general version 
of the model are presented. We find that qualitatively speaking the effect of temperature is to 
render the system weakly coupled. It counterbalances the effect of the,coupling parameters. 

This study is performed as follows: in section 2 we present the model and in section 3 
the thermodynamical properties are derived in the mean-field approximation. Next, the 
dynamical effects of temperature are presented in section 4. Concluding remarks are given 
in section 5. 
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2. The model 

As originally proposed by Lipkin, Meshkov and Glick the SU(2)  Lipkin model consists of 
an N-fermion system Occupying a two N-fold degenerated levels with energies + i c  and 
-46 respectively. Each state is described by a quantum number U which has the value 
+1 (-1) in the upper (lower) shell. The other quantum number p specifies the particular 
degenerate state within the shell. 

M 0 Terra et al 

The Hamiltonian is constructed as follows: 

c oaJ,,apo - i v c N N N  

H = i c  c aJraj,ap.-.ap-, 
<=*I p=1 #=*I p=1 p'=l 

where the operators apr(ap,,) t correspond to the creation (annihilation) of a particle in 
the p state of the U level. V and W are the parameters specifying the strength of the 
interactions: the V term mixes states having different numbers of excited particle-hole 
pairs, by scattering a pair of particles in the same level to the other level. The W term 
does not mix configurations and simultaneously scatters one particle up and the other down. 
Introducing the following quasi-spin SU(2)  operators: 

The Hamiltonian can be cast into the form [l] 

N = €Jt - fV(J: + JZ) - i W(J+J- + J- J+) . (4) 

The Casimir operator of the group J z  commutes with H and represents half of the total 
numbers of particles N/2. 

3. Thermodynamics 

When one considers a finite number of particles the thermodynamics of the model can 
only be studied numerically. In the large-N limit, however, (J + CO, h + 0, h J  
finite) the mean-field approximation becomes exact and the thermodynamic properties of the 
model can be obtained almost analytically. In the present section we start by constructing 
the equilibrium state in a variational mean-field approach. The relevant thermodynamic 
quantities are then calculated, with particular emphasis on their phase transition behaviour. 
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3.1. Equilibrium states 

The most general form of a mean-field density matrix for the model under consideration is 
the following: 

bo = Kexp(-phMF) (5) 

where 

hMp=ci1Jz+ci2J+f$J- (6) 

and K is a normalization constant. The set of complex parameters ai are viewed by imposing 
that the free energy is a minimum, 

pF =pTr(DoH)+Tr(DoInDo) (7) 

where @ is related to the temperature as p = l/kBT. It is, however, much simpler to work 
with the diagonal form of DO [5-71, and we proceed to define it: 

D = UDoUt = K’eUJz (8) 

where 

The free energy can now be written as 

p F = p Tr(Ut DU H) f Tr(D In D) 

= pTr(DUHUt) fTr(D1nD) 

The variational parameters are now the temperature, 01 and q.  In fact, as far as the 
stationary properties of the system are concerned, it is enough to consider the imaginary 
part of q. We define 

q = 9 / 2  9 a real number. 

Explicitily one gets, for example 

For the free energy we get 

N ff N 
2 2 4 2 F = E cos&- tanh (-) - (V + W )  sin2.9-(N - 1) tanh2 (E) 

f f N  N W N  + - tanh ( z )  - -j In [2cosh (;)I - -j- . 
28 
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F l y r e  1. Relationship between the variational parameters a (0) as well as R (b)  and the 
inverse temperature B of the system in the defonnedphase for two different values of coupling 
parameters sum ( x  + 9). Note that this phase just exists for ( x  + x )  2 1. 

We next consider that this quantity scales with N provided that we define 

V ( N  - 1) 
x =  E (13) 

( 14) ~~ 

W(N - 1) 
!€= 

E 

We can now take the limit N + CO and calculate 

(15) 
N 01 N ff 

E sine- tanh (?) - E ( X  + K) sin0 cose- tmh2 (?) = 0 
aF 
ae 2 2 
_ = _  

aF ( E c o s B - ~ ( ~ + ~ ) s i n * ~ ~ h ~ ( ~ ) + ~ ) c o s h - ~ ( ~ )  = O .  (16) 
aa! 4 

The above equations have two solutions, which correspond to the normal and deformed 
phases, respectively. 
Normal phase: 

B = O  (17) 

a = - D E .  (18) 

Deformed phase: 

The solutions of the equations (19) and (20) have to be found numerically. The 
relationship between a, 8, @ and ( x  + K )  is non-trivial, as can be seen in figures I @ ) ,  (b). 



Temperature dependence of SLJ(2) Lipkin model 701 

Notice that in order to have the deformed solution two conditions have to be satisfied 

x + K > ~  and O < T < T ,  

where T, corresponds to the solution of the trancendental equation 

The relationship between flcr and x + K is shown in figure 2. 

" 
0 (x+& 2 4 6 8 10 

X+K 

Figure 2. The critical invene tempemure, where the system changes phase, as a function of 
the coupling parameter sum ( x  + K ) .  The critical value ( x  + x )  = 1 is indicated. 

3.2. Thermodynamic properties and results 

We are now in a position to calculate the following quantities as a function of the 
temperature. 
The free energy 

€(X + K )  . 0 1 0 1  0 1 1  
F = - = = -  - N F  COS^ 2' tanh(9)- 4 sm28 tanh2(Z)+28tanh(.Z.)-Bln[2cosh(~)]. 

The internal energy 

tanh ( z )  - 4 sin' 8 tad? (;) . (7-2) 
- Tr(DH') cos0 E =  -- - 

2 N€ 
The entropy 

- s  Tr(D1nD) a , y = - - - ~  - = - - tanh (4) + In [2 cosh (31 . (23) kBN N 2 

The average density of excited particle 
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The specific heat of the system 
aE sinz 0 

[ I  - ( x  -t K)- tanh (i)} . c = - = k B E p 2  
aT 4coshz(f) COS e 

These four quantities are displayed in figures 3(a)-(d) for both the normal (broken 
curve) and the deformed phase (full curve). The specific heat is shown in figure 4 for three 
values of ( x  + IC) .  The marked differences in both phases can be observed in all figures. 
Notice that for the normal phase the graphs are independent of (x + K). This can be easily 
understood from the above expressions, inserting the equilibrium solution 0 = 0. In the 
deformed case, the zero-temperature ground state has both levels populated, in contrast with 
the normal phase as can be seen by JL in figure 3 ( 4 .  For temperatures p e pm the two 
solutions merge. The same physics is also reflected in the average energy (figure 3(a)) and 
free energy (figure 3(c)). The entropy shows an abrupt change for p = per. 

- -  
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P 

Figure 3. The intemal energy (b), the free energy f (c) and the average 
densily of excited particles ?: (d )  as a function of inverse temperamre for ( x  + K )  = 1.5. The 
value of critical inverse temperature &, at which there is phase transition is shown and the 
two phases are separated by a vertical dotted line. The broken curyes correspond to the normal 
phase. Its shape does not depend on coupling parameters. being a maximum of free energy for 
( x  + K) > 1.0 and the unique equilibrium solution for ( x  + K )  < 1.0, when there is no phase 
transidon. 

(a), the enwopy 
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Figure 4. The specific heat of the system 
as a function of i n v a  temperature for (a) 
( x  + z) = 0.6, (b) (,x + K) = 1.5 and (e) 
( x  + U )  = 5.0. The broken curves correspond 
IO the normal phase. 

4. Finite temperature dynamics 

 the following procedure to derive finite-temperature dynamics of the system is quite general 
and should be valid for all systems described in terms of generators, of Lie groups. The 
method is presented in [SI and will be applied here to the SU(2) Lipkin model. 

4.1. Canonical variables and equations of motion 

We start by consfmcting the thermal classical Lagrangian of the system (2 = 11, 

L = iTr(DUUt) -Tr(DUHUt) (26) 

where U has the same form as in the previous section, but with time-dependent parameters 

U = exp[i(z(t)J+ +z*(t)J-)I (27) 

In order to give an explicit expression for L, we need to calculate the following 
and D is the equilibrium diagonal density (8). 

quantities: 

(-D sin2& zi* - iz*) 
zz* Tr(DUUi)  = -( 
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Tr(DU(J+ J- + J- J+)Vi) = 2s; cos(2&3 + 2 COS4 fi(2c - j z )  

+ ~ s i n ~ ~ ~ C o s ' . \ l ; ; ; ~ + + s i n ~ ~ ( ~ + ~ )  (31) 

with h = Tr(D J,) = ( N / 2 )  tanh (or/2) and 2 = Tr(0.I:) = N / 4 .  

matter to check that 
We next look for a canonically conjugate pair of variables. Looking at (28) it is a simple 

(32) 
- 112 s i n e  

6 = ~  (-25,) - 

- 112 s i n 4 3  6* = z* (-23,) - G (33) 

are the canonically conjugate pair. In terms of 6 and 8' the Lagrangian can be written as 

where 

The corresponding Hamiltonian can now be derived, 

(36) 
H -  1 x  K 
-= Jz + 66" - - - ( S 2  + S*')(2jz + 66') - - H 3 .  

E 2 N  N 

The range of allowed values for 6S* is obtained from the condition 

(37) 
66" 

c o s 2 G =  1+- 
2 4  

from which one gets 

0 < 66* < -27, . 
In terms of action and angle variables 

J* = J-J; + I e-ie 
~ 

with j; < I  < -JZ. 
The classical energy of the system can be rewritten as 

H 2 . 2  E = J = 9 + $(Th - q  ) ( x c o s ( ~ )  -6) 
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where q = I / J ,  Th = & / J  = tanh @/2) and the limitations on the phase space are given 
by 

Th < II < -Th (42) 

- - R < ~ < - R .  (43) 

For the sake of clarity we display & as a function of temperature in figures 5(a),(b). 
Notice from the above conditions that the size of the phase space shrinks as the temperature 
increases. This is a direct consequence of the relationship between q and &. When T + 00 

there will be only one configuration which minimizes the free energy, i.e. 7, = 0. In the 
opposite limit, i:e. T + 0 we get the result given in the literature [8]. 

(a) 0.0 

-0.2 

-0.4 

Th-0.8 

-0.6 

-1.0 

-1.2 . , . , ' .  , , , ' .  , , , , , I , , . , ' , , , . 
08 .1  2 3 4 5 8 

8 

Figure 5. Th as a function of inverse temperature p for two values of coupling panmeters 
sum: (a) (,y + K )  = 5.0 and (b)  ( x  iK) = 1.5. The brokm.curves correspond to coupling 
parameter sum below 1.0. 

4.2. Fixed points and bifurcations 

The equations of motion can 'now be calculated, 

i= - - -x (T~-q2) s in (28)  
aE 
ae (44) 

(45) 
. aE e = - I - qfXCOS(28) - K ] .  
. aq  

As we shall see in what follows the dynamics may exhibit three types of behaviour as 
a~function of the relationship between the parameters x and K .  

First case; x = 0 and K # 0 
In this case for K > 1 the effect of the interaction is to produce a line of minima which 
disappears as the temperature increases. This can be seen mathematically by the condition 

(46) G = O  8 = 0 = 1 + q K - q = - -  with I ~ h l > - ~ .  1 1 
K K 
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E 

IO1 ( W  

Pigcre 6. Clasical cqezgy surface E(q.8) for intervals +Th < q < -TI., - z j2  < 0 < z/2 
for coupling parameters K = 5.0 and x = 0.0 (first case) for (a) Th = -1 (T = 0) and 
(b) Tb = -0.2 (T = TCJ. Note the energy-range reduction. phase-space shrinkage and the 
disapparence of the line of minima at Ter. 

E 

(3 (bl 

Figure 7. Classical energy surfact E(& 8 )  for intervais +Th < q < -%, -1117. 6 0 < 1112 
for coupling parameters x = 0.6 and K = 0.0 (second case) for (a) 7 i  = -1 (T = 0) and (b)  
Th = -0.2. - 
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In figures 6(u),(b) the energy is depicted as a function of q and 8 for T = 0 (a)  
and T s T,, (b). Notice that the critical temperature here, which corresponds to the 
disappearence of the line of minima, is precisely the one predicted by the thermodynamics 
of the model. 

This bifurcation is iintimately connected to the effect of temperature on the dynamics of 
the system that is to ‘weaken’ the~contribution of the interaction term. 

E 

Figure 8; Classical energy surface E h ,  8 )  for 

for coupling parameters x = 5.0 and K = 0.0 
(second case) for (a) Th = -1 (T  = 01, (b)  
Th = -0.5 (0 < T < 23 and (C) rh = 
-0.2 (T = Ta). Note the disappearence of 
the closed orbits (libration) with temperature 
increase. 

intmala +Tb < It 4 -Th, - X I 2  < 8 < X I 2  



708 

Second case: x # 0 and K = 0. 

The case x < 1 is very simple. There are no fixed points and all phasespace trajectories 
are open (rotation motion) (see figure 7(a)). The effect of temperature in this case is again 
shrinking phase space and flattening of the energy surface, which corresponds qualitatively 
to a weaker coupling. 

The case x > 1 shows a bifurcation of equilibria where the following fixed points 
disappear as a function of the temperature (see figures 8(a)-(c)) and the corresponding 
contour lines on figures 9(a), (b): 

M 0 Terra et a1 

n 9 

(b) (.I 

Figure 9. Contour lines corresponding to figure 8 energy surfaces at ( U )  Tb = -1 (T = 0) and 
(b) Th = -0.2 (T = Ta). At the phase transition temperature all the closed orbits disappear 
(libration) and we just have opened orbifs (rotation) in the phase space. 

(a) Two maxima 

. (47) 
1 + TZx2 

2x 
PI = ( $ , n n )  n = O , l  with energy El = 

(b) Two minima 

n = 0 , 1  E2 = -El.  (48) 

(c) Separatrix 1: four saddle points 
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1" Situation: x- 2 1 

Marima (P,.) and T = 0  T = -  
corresponding saddles (PSn,en) l-----4 I 

[Thl = 1.0 X I '  x;z 0 

Minima (Pzn)and 
corresponding saddles (PSn.(") l- --- - -P ---- 4 I 

lThl = 1.0 X I '  x;' 0 

2nd Situation: -x- 2 1 

Minima (Pz.) 

Saddle points of minima 

Yd Situation: 1x-j < 1 

Minima (Pz.) and 
Saddle points (P3n,4n) 

r--- --k----d I 
(Th(= 1.0 X I '  x;' 0 

l-----4 I S. 

In the Td and 3rd Situation, the 
ma*ma and corresponding saddle points 
(P*,&) do not exist. 

Figure 10. The three situations found in the third case as 4 function of the relationship of 
the coupling parameta x and K,. ?be fixed points are presented with theii range of existence 
marked with a wavy line. 

(d) Separatrix 2 four saddle points 

(2) -nz) n = 0,1 E5 = -% (51) 

The energy surfaces for the situation discussed can be found in figures 6(a),(b) (first 
case), figures 7(a), (b) and 8(at(c) (second case), figures 1 I(afi(c), IZ(a), @) and 13(u), (&) 
(thiid case). 

Such points exist only for T < T, where TI&) = -l/x, the same temperature as 
obtained in the equilibrium case. Therefore, for the given ranges in T and x, we get three 
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E 

..' 

E 

Figure 11. Classical energy surface E(%@) 
in the previous variable intervals for coupling 
p""e(er~  x = 5.0 and x = 2.5 ( x  5 x and 
x - v  5 l)for(a) E, = -1.0 (7 =O).(b)Th = 
-0.4 = 1 f x -  and (e) Th = -0.13 = fix+. 
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E 

(4 (b) 

Figure 12. Classical energy surface E(q .  8)  in the previous variable intervals for coupling 
parameters x = 2.5 and Y = 5.0 ( x  < K, and K - x z 1) for (a) Th = -1.0 (T = O ) ,  (b) 
Th = -0.13 = 1/x+. 

E 

(a) (b) 

Figure U. Classical energy surface E ( q ,  0) in the previous variable inlervals for coupling 
parameters ,y = 5.0 and K = 5.5 (1x-l < 1) for (a) Th = -1.0 (T = 0) and (b) rh = -0.1. 
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types of trajectories: a bounded motion (in q )  around the maxima ( E  > -%) and minima 
( E  < %) (libration) and an unbounded motion (in q )  (T, < E < -TI) (rotation). 

Third case: x # 0 and K # 0. 

In this case the parameters which determine the fixed points are the following combinations 
o f  x and K: 

X + = X + K  and X - = X - K  

When x+ < 1 no fixed points are found. When x+ 2 1, the fixed points with 
corresponding limits of validity are summarized in table 1. 

Qualitatively speaking we have three situations: they are schematized in figure 10. The 
range of existence is marked with a wavy line. 

Notice that in alf situations studied the effect of increasing temperature is to ‘weaken’ 
the-coupling strength, in such a way that the system tends to situation ,y = K = 0, as can 
be seen in figures 6(b).  7 ( b ) ,  S(c), ll(c), 12(6) and 13(b). 

5 . ~  Conclusions 

In this work we have investigated both the thermodynamics and thermal dynamic properties 
of  the SU(2)  Lipkin model. To our knowledge it is the first time that the originally proposed 
version of the model (with the interaction term in K) has studied in such detail. Particular 
attention is given to the behaviour of fixed points and bifurcation of the equilibria with 
temperature. In our opinion the next interesting analysis to be performed is the thermal 
version of the SU(3) Lipkin model where chaotic effects are also known to be present 
19-12], Work along this line is presently under way. 
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